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Abstract

We present a consistent numerical model for coupling radiation to hydrodynamics at low Mach number. The hydro-
dynamical model is based on a low-Mach asymptotic in the compressible flow that removes acoustic wave propagation
while retaining the compressibility effects resulting from combustion. Radiative transfer is modelled by the M1 entropy
equations that can be viewed as a moment method. The radiation model possesses the capability to accurately approximate
solution of radiative transfer at low computational cost while retaining the main physical properties of radiative energy.
Consistent numerical approaches are developed for space and time discretizations in both hydrodynamics and radiation.
A modified projection method is used for hydrodynamics, whereas an HLL-type discretization is implemented for radia-
tion transport. The combined methods permit time steps that are controlled by the advective time scales resulting in a sub-
stantial improvement in computational efficiency compared to a compressible formulation. Numerical results are presented
for the natural convection in a squared cavity with large temperature difference and also for a diffusion methane/air flame
with four-step reduced chemical reactions in non-gray participating media. The present approach has been found to be
feasible and satisfactory.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Simultaneously occurring flow, combustion, convection and radiation in enclosures occur in several
practical phenomena such as nuclear reactor safety, combustion, furnaces, fires and flames among others.
In many of these applications, the characteristic flow velocity is very small and the characteristic temperature
difference in the enclosure is very large. The first property requires modelling of low Mach number flows for
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which compressible solvers are inappropriate, while the second property allows large density and temperature
gradients which cannot be modelled by the canonical Boussinesq approximation of incompressible flows. On
the other hand, it is common for studies on heat transfer to neglect other modes of heat transport such as
thermal radiation. This mainly because, the modelling of radiative transfer involves complex mathematics,
high computational cost, lack of chemical kinetics database, and significant uncertainty concerning the optical
properties of the participating media and surfaces. However, radiation can strongly interact with convection in
many situations of engineering interest, compare for example [13,16] and further discussions can be found
therein. For instance, the influence of radiation on natural convection is generally stronger than that on forced
convection due to the inherent coupling between the temperature and flow fields in enclosures. Therefore, our
goal in this paper is to develop a consistent approach for radiating and reacting flows at low Mach number
that are not only realistic enough to yield meaningful calculations, but also simple and fast enough to avoid
overcharging the computational cost. This goal is reached by combining a low Mach asymptotic in the flow
equations with an entropy moment model for the radiative transfer equation.

Our interest is in the development of a fast and accurate algorithm which is capable of solving reacting
flows at low Mach number in radiating media ranging from optically thick to optically thin regimes. There
are several reasons that justify the development of such algorithm. The first and the most important is that
in many situations, such as methane/air flame, low Mach number coexists in the flow domain with radia-
tive transfer in the participating gas where different optical and time scales may occur. Another more prac-
tical motivation is that an algorithm that can successfully solve flow at low Mach number coupled with
radiative transfer in optically thin media using consistent space and time discretizations is well suited for
abroad range of applications typically handled with incompressible formulations for flow and Monte Carlo
method for radiation. Indeed, for low Mach numbers, the compressible Navier–Stokes equations describe
almost incompressible flow. This singular limit of compressible flow equations is reasonably well under-
stood such that, under some assumptions on the flow and some regularity conditions on the initial and
boundary data, the solution of compressible equations, in the zero Mach number limit, can be shown to
satisfy the incompressible flow equations [17]. From the computational point of view, accurate solutions
of low Mach flows are difficult to obtain. This is due to the very different magnitude of the wave speeds
which are present in the system. To overcome these difficulties, we consider the low Mach asymptotic
reported in [17] and also used by the authors in [7,33] for modelling fire events in vehicular tunnels.
The key idea consists of expanding the flow variables in powers of the Mach number leading to incom-
pressible flow which allows density variations. This results in significant computational savings, since the
time step is limited only by the convective velocity and not by the acoustic velocity. It should be stressed
that the emphasis in the current work is on the development of approximate models for radiative transfer
coupled to reacting flows at low Mach numbers. Therefore, the radiative models presented in this paper can
be incorporated into other existing models for low Mach flows, for example those studied in [21] where
turbulent effects are also accounted for in the low Mach number model and the discrete-ordinates method
is used for the radiative transfer.

In the full simulation of combustion systems, the radiative transfer, which is an integro-differential equa-
tion, must be solved along with the partial differential equations of material, momentum, energy transport
and chemical reactions as a fully coupled system. The most accurate procedures available in the literature
for computing radiative transfer are the zonal and Monte Carlo methods [19]. However, these methods are
not widely applied in comprehensive combustion calculations due to their large computational time and stor-
age requirements. Also, the equations of radiative transfer are in non-differential form, a significant inconve-
nience when solved in conjunction with the differential equations of flow and combustion. Most of the current
work on modeling energy transport in high-temperature gases or chemically reacting flows uses CFD codes.
Therefore, the models for solving the radiative transfer must be compatible with the numerical methods
employed to solve the reacting flow equations. The zonal and Monte Carlo methods for solving the radiative
transfer problem are incompatible with the mathematical formulations used in CFD codes, and require pro-
hibitive computational times for the spatial resolution desired. The Sn discrete-ordinate methods [5] appear to
be reasonable compromises for solving the radiative transfer equations, but still one has to deal with large
systems of algebraic equations, resulting from discretizing angle and space coordinates, that may deteriorate
the efficiency of the CFD code.
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Approximate models for radiative transfer have also been derived and widely used in the literature. As
example for such approximations we cite the diffusion (Rosseland) approach and the simplified PN equations,
see [6,12,33] among others. These simplified models are derived by asymptotic analysis and perform very well
when the medium under consideration is isotropic and optically thick (opaque). In fact, in an opaque medium
the system is close to a radiative equilibrium for which assumptions of diffusion and simplified PN equations
are satisfied. However, for anisotropic or transparent (optically thin) media, the system is far from the radi-
ative equilibrium and the previous approximate equations are no longer valid, see [29] for a situation where the
PN models produce nonphysical solutions. Another way to derive approximate equations for the radiative
transfer is by taking suitable moments and closure relations, we refer the reader to [1–4,14] for more details
on the moment approximations. In the current work, the entropy M1 moment is selected to describe the radi-
ative signal in reacting flows at low Mach number. The M1 model is closed by a maximum entropy closure
which introduces good properties in the model such as flux limited by the speed of light and dissipation of
the local entropy. Furthermore, the M1 model is a hyperbolic system of partial differential equations that
can be solved by already existing numerical tools from CFD codes.

The focus in the present work is on combined convection and radiation in gas or gas mixture where accu-
rate modelling of radiative transfer is required. Therefore, numerical results and applications are presented for
three test problems with different orders of difficulty. First, we verify the validity of the moment model for a
purely radiative transfer equation by comparing its accuracy and efficiency to a direct solver for the kinetic
radiative transfer equation. In the second example we solve the buoyancy flow in a squared cavity with vertical
side wall differentially heated with large temperature difference. Our method accurately resolves this natural
convection-radiation problem. The last example considers a diffusion methane/air flame involving a reduced
four-step chemical reactions for reacting species in non-gray gas. Our findings have shown that radiation heat
loss can affect not only the flame temperature but also the velocity field and the concentrations of chemical
species such as CO2 and HO2. Furthermore, in the considered flame, radiation can be an important energy
loss mechanism affecting the flame structure, and radiative heat transfer can be commonly the most significant
mode of energy transfer in industrial-scale combustion systems.

The organization of this paper is as follows. In Section 2 we formulate the mathematical models for chem-
ically reacting flow and radiative transfer. We briefly discuss the low-Mach asymptotic for the fluid dynamics,
the simplified chemical mechanism for reacting flow, and the entropy M1 model for radiation transfer. In Sec-
tion 3 we describe the solution procedure for the governing equations. Section 4 is devoted to numerical results
for different test examples. We present results for natural convection in a squared cavity with large tempera-
ture difference and also for a diffusion methane/air flame in rectangular enclosure. Conclusions are summa-
rized in Section 5.

2. Equations of low-Mach number reacting flow

The governing equations for unsteady compressible flow are the full Navier–Stokes equations describing
conservation of mass, momentum, energy and species in a viscous Newtonian fluid. A dimensionless form
of the equations is retained. In dimensional form, these equations are
otq
� þ r � ðq�u�Þ ¼ 0;

otu
� þ ðu� � rÞu� þ 1

q�
rp� ¼ l

q�
Du� þ 1

3
rðr � u�Þ

� �
þ g�;

otðcvq
�T �Þ þ r � ðcvu�q�T �Þ þ p�r � u� ¼ r � ðKrT �Þ � r � q�R þ

XN s

i¼1

_w�i ;

ot q�Y �i
� �

þr � u�q�Y �i
� �

¼ �r � q�Y �i V i

� �
þ _w�i ; i ¼ 1; . . . ;N s;

ð2:1Þ
where q�ðt; xÞ; u�ðt; xÞ; p�ðt; xÞ; T �ðt; xÞ and Y �i ðt; xÞ denote, respectively, the mass density, the flow velocity,
the thermal pressure, the fluid temperature and the mass fraction of the ith species. Here, Vi is the diffusion
velocity of the ith species, defined for example in [39]. The terms g* and q�R describe the gravitational force
and radiative heat flux, respectively. The quantities l; K; cv are the dynamic viscosity, the heat conductivity
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and the specific heat coefficient at constant volume, respectively, whereas Dij which appears in the definition of
Vi is the binary coefficient of species i and j with Ns is the total number of reacting species. The nondimensional
form of the system (2.1) is obtained by scaling every variable by its characteristic values as follows:
x ¼ x�

xref

; t ¼ t�

tref

; r ¼ r�

rref

; K ¼ K�

Kref

; Y i ¼
Y �i
Y ref

;

q ¼ q�

qref

; u ¼ u�

uref

; T ¼ T �

T ref

; p ¼ p�

pref

; I ¼ I�

I ref

;

ð2:2Þ
where the subscript ref and superscript � represent reference and dimensional quantities, respectively. In (2.2),
xref ; tref ; rref ; Kref ; Y ref ; qref ; uref ; T ref ; pref and I ref denote a characteristic length, time, absorption, thermal
conductivity, mass fraction, density, velocity, temperature, pressure and radiative intensity, respectively.
Canonical dimensionless numbers are defined by
s ¼ rref xref ; c ¼ cp

cv

; M2 ¼ qrefu
2
ref

cpref

; Re ¼ qref urefxref

l
; Pr ¼ lcp

K
;

Sc ¼ l
qref xref

; Da ¼ trefW OA0

qref

; Fr ¼ urefffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xrefkgk

p ; g ¼ g�

Fr2kg�k
:

ð2:3Þ
Here s, c, M , Re, Pr, Fr, Sc, Da are the optical thickness, the adiabatic exponent, the Mach number, the
Reynolds number, the Prandtl number, the Froude number, the Schmidt number, and the pre-exponential
Damköhler number, respectively. The coefficients cv and cp are the specific heat coefficients at constant
volume and pressure, respectively. In the definition of the pre-exponential Damköhler number, W O and
A0 represent, respectively, the molecular weight of the oxygen species and the characteristic reaction
rate, see for instance [20] for more details. Hence, the fluid dynamics system we consider in this paper
reads
otqþr � ðquÞ ¼ 0;

otuþ u � ruþ 1

cM2

1

q
rp ¼ 1

Re
1

q
r2uþ 1

3
rðr � uÞ

� �
þ g;

otðqT Þ þ r � ðuqT Þ þ ðc� 1Þpr � u ¼ c
Pr

1

Re
r2T � s

Z 1

0

Z
S2

rðBðT ; mÞ � IÞ dX dmþ
XN s

i¼1

_wi;

otðqY iÞ þ r � ðuqY iÞ ¼
1

Re Sc
r2Y i þ Da _wi; i ¼ 1; . . . ;N s;

ð2:4Þ
where Iðt; m;X; xÞ denotes the radiative intensity. We have used S
2 to denote the unit sphere, x the space coor-

dinate, t the time variable, X the directional angle and m the frequency variable. The fluid dynamic model is
closed by the equation of state for an ideal gas,
p ¼ RqT
XN s

i¼1

Y i

W i
; ð2:5Þ
where R ¼ cp � cv and W i is the molecular weight of species i. The spectral intensity Iðt; m;X; xÞ at time t, in
position x, within frequency m and propagating along direction X with a speed c, is obtained from the non-
scattering radiative transfer equation
1

c
otI þ sX � rI þ rI ¼ rBðT ; mÞ; ð2:6Þ
where rðmÞ is the absorption coefficient and BðT ; mÞ is the spectral intensity of the black-body radiation given
by the Planck function
BðT ; mÞ ¼ 2hPm3

c2

1

exp hPm
kBT

� �
� 1

; ð2:7Þ
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with hP, kB and c are Planck constant, Boltzmann constant and the speed of radiation propagation in the med-
ium, respectively. For more details on physical aspects and mathematical equations for radiation hydrody-
namics we refer to [18,19,22] and further references are cited therein. Eqs. (2.4)–(2.6) have to be solved in a
bounded spatial domain D with smooth boundary oD, equipped with given boundary and initial conditions.
These conditions are problem dependent and their discussion is postponed for Section 4 where numerical
examples are presented.

Note that chemically reacting flows require in addition to (2.4) and (2.6) a set of equations for reaction
rates. A simplified chemical mechanism of four-step reactions for diffusion methane/air flames is formulated
in Section 2.2.
2.1. Low Mach approximation for hydrodynamic flow

An important class of practical applications in reacting flows occur at low Mach numbers which lead to a
fast characteristic time-scale associated with the propagation of acoustic waves. In this case, the wave velocity
is equal to maximum of the flow speed and the velocity of sound. It is well known that using the compressible
equations (2.4) for low-Mach numbers is inefficient. A way to overcome this drawback is to perform an
asymptotic analysis with respect to the Mach number, see [17] for more details.

The derivation of the low-Mach number equations is obtained by expanding the pressure, temperature and
velocity variables in terms of the scale � ¼ cM2
p ¼ pð0Þ þ �pð1Þ þ . . . ; ð2:8Þ

with a similar equation for the temperature T and velocity u. The variables pð0Þ and pð1Þ can be interpreted as a
thermodynamic pressure and a fluid dynamic pressure, respectively. Introducing the expansion into Eq. (2.4)
and balancing all terms of the same power of �, the asymptotic equations of leading, first and second order are
obtained [7,33]. Omitting the details here, the asymptotic analysis can be summarized as follows. From the
leading order of the pressure equation, the time dependency of the pressure pð0Þ is given by
otpð0Þ þ cpð0Þr � u ¼ cpð0Þ

Pr Re
r2 1

q

� �
þ q; ð2:9Þ
where q represents the sum of the radiation and chemical sources, see (2.4). In the relation below, u and q are
zero order terms.

As in [7,33], we used that the gradient of the thermodynamic pressure is constant in space. Hence, by inte-
grating Eq. (2.9) over the computational domain D and applying the Gauss theorem we obtain
Dj jotpð0Þ þ
cpð0Þ

Dj j

Z
oD

u � n ds ¼ cpð0Þ

Pr Re

Z
D

r 1

q

� �
� n dxþ

Z
D

q dx; ð2:10Þ
where jDj and n denotes the area of D and the unit outward normal vector on the boundary oD, respectively.
An initial condition for (2.10) is
pð0Þ ¼ 1: ð2:11Þ
The system (2.10) and (2.11) represents a first order initial value problem for pð0Þ. Because our numerical
scheme (see Section 3) has first order accuracy, by considering the integral terms in (2.10) constant in time,
a solution to (2.10) and (2.11) is
pð0ÞðtÞ ¼ expð�AtÞ þ C
A
; ð2:12Þ
where
A ¼ c
Dj j

Z
oD

u � n ds� c
Dj jPr Re

Z
oD

r 1

q

� �
� n ds; C ¼ 1

Dj j

Z
D

q dx:
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Then, by inserting (2.10) and (2.12) into (2.9) yields
r � u ¼ 1

c
Aþ 1

Pr Re
D

1

q
þ q� C

c expð�AtÞ þ C
A

� � : ð2:13Þ
For more details on the procedure below, we refer to [32]. Hence, in leading order Eqs. (2.4) reduce to
otqþr � ðquÞ ¼ 0;

otuþ ðu � rÞuþ
1

q
rp ¼ 1

Re
1

q
r2uþ 1

3
rðr � uÞ

� �
þ g;

r � u ¼ Q;

otY i þr � ðY iuÞ ¼
1

ReSc
r2Y i þ _wi; i ¼ 1; . . . ;N s;

ð2:14Þ
with p ¼ pð1Þ is hydrodynamic pressure and Q is the right-hand side term of (2.13). The fluid temperature T in
leading order is deduced from the density as
T ¼ pð0Þ

q
: ð2:15Þ
Using the modified projection method described in [7], the nonlinear system (2.14) can be expressed as
otqþr � ðquÞ ¼ 0;

otuþ ðu � rÞuþ
1

q
rp ¼ 1

Re
1

q
r2uþ 1

3
rQ

� �
þ g;

r � 1

q
rp

� �
¼ r � 1

Re
1

q
r2uþ 1

3
rQ

� �
þ g

� �
;

otY i þr � Y iuð Þ ¼ 1

ReSc
r2Y i þ Da _wi; i ¼ 1; . . . ;N s:

ð2:16Þ
Another early approach to derive low-Mach number equations was presented in [21]. By differentiating the equa-
tion of state (2.5) with respect to time variable, the authors in [21] obtained a different version of the velocity-
divergence constraint. The resulting system was then used to simulate unsteady, non-premixed reacting flows.
In addition, it is clear that the low Mach equations used by the authors in [7,33] for non-reacting flows can be
retained if open systems are considered or no compression from the outside takes place. In these situations, col-
lecting the zeroth order terms in the momentum equation yields to a thermodynamic pressure pð0Þ which is con-
stant in space and can only be a function of time. Moreover, because the radiation does not appears explicitly in
the momentum equation, it does not affect the pressure pð0Þ in space, it will affect its time-dependence, see (2.9).

Note that, when the Mach number M P 1 the whole asymptotic approach is not valid anymore and the
pressure pð0Þ cannot be constant in space. Furthermore, assuming that the domain has an open entry or exit,
otpð0Þ in (2.9) can be neglected resulting a non-constant velocity divergence. A rigorous mathematical justifi-
cation of such asymptotic analysis can be found in [11].

2.2. Simplified four-step model for chemical reactions

In general, the set of N r elementary reversible chemical reactions involving Ns chemical species Si can be
represented in compact form as follows
XN s

i¼1

mf
ijSi�

XN s

i¼1

mb
ijSi; j ¼ 1; 2; . . . ;N r; ð2:17Þ
where mf
ij and mb

ij are the ith species stoichiometric constants for the jth forward and backward reaction, respec-
tively. The net rate of creation of species i by chemical reaction is given by
_xi ¼ _xþi � _x�i ; ð2:18Þ
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with _xþi and _x�i are the production and destruction rates of species i given by
Table
Reacti

Reacti

k1

k5

k10

k11

Units
_xþi ¼ W i

XN r

j¼1

mb
ijR

f
j þ mf

ijR
b
j

� �
; _x�i ¼ W i

XN r

j¼1

mf
ijR

f
j þ mb

ijR
b
j

� �
; ð2:19Þ
where W i is the molecular weight of the ith species. The forward and the backward reaction rates are defined as
Rf
j ¼

XN s

i¼1

aijCi

 !
kf

j

YN s

i¼1

C
mf

ij
i ; Rb

j ¼
XN s

i¼1

aijCi

 !
kb

j

YN s

i¼1

C
mb

ij
i : ð2:20Þ
Here, aij is the third body efficiency for the ith species in the jth reaction, Ci ¼ qY i=W i is the molar concen-
tration of the ith species. The forward and backward reaction rate constants by the modified Arrhenius
law are given by
kf
j ¼ Af

jT
bj exp �

Ef
j

RT

 !
; kb

j ¼
kf

j

Kc
j

; ð2:21Þ
where Aj; bj; Ef
j and Kc

j are the pre-exponential factor, temperature exponent, activation energy and equilib-
rium constant, respectively.

The chemical kinetic mechanisms for gas flames are described in detail in various available literatures, see
[39,37,31] among others. We therefore restrain ourselves to brief summary and further details can be found in
the above mentioned references. In the current work we use a reduced chemical model based on a four-step
chemical mechanism proposed in [31] for methane/air flames. The model consists of the following chemical
reactions:
CH4 þ 2HþH2O! COþ 4H2 ðIÞ
COþH2O�CO2 þH2 ðIIÞ
HþHþM! H2 þM ðIIIÞ
O2 þ 3H2�2Hþ 2H2O ðIVÞ
The associated reaction rates are defined as
_xI ¼ k11CCH4
CH;

_xII ¼ k10

CH

CH2

CCOCH2O �
CCO2

CH2

KII

� �
;

_xIII ¼ k5CO2
CHCM;

_xIV ¼ k1CH CO2
�

C2
HC2

H2O

KIV C3
H2

 !
;

ð2:22Þ
where the equilibrium constants are given by
KII ¼ 3:828� 10�5T 0:8139 e9839=RT ; KIV ¼ 11:283T�0:2484 e11400=RT :
The values of reaction-rate constants appearing in (2.22) are listed in Table 1. The concentration of the third
body CM is calculated from the catalytic efficiency of species and its molecular weight as
1
on-rate constants

on rate Âi bi Ei

1:2� 1017 �0.91 69.10
2:0� 1018 �0.8 0.0
1:656� 107 1.5247 60.042
2:2� 104 3.0 36.6

in cm, mol, Kelvin and kJ.
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CM ¼
XN s

i¼1

giCi;
with catalytic efficiencies gCH4
¼ gH2O ¼ 6:5, gO2

¼ gN2
¼ 0:4, gCO2

¼ 1:5, gCO ¼ 0:75 and gH2
¼ gH ¼ 1,

compare [27]. With the reduced reaction mechanism only seven conservation equations for the species
C4, CO2, CO; O2; H2O; H2, and H are required to be solved. The inert species, N2, is recovered from
these seven species. The reaction rates _xi for the source terms in equations (2.16) are obtained from
the rates (2.22) as
_xCH4
¼ �W CH4

W O

_xI;

_xO2
¼ �W O2

W O

_xIV;

_xH2O ¼
W H2O

W O

2 _xIV � _xII � _xIð Þ;

_xCO2
¼ W CO2

W O

_xII;

_xCO ¼
W CO

W O

_xI � _xIIð Þ;

_xH2
¼ W H2

W O

4 _xI þ _xII þ _xIII � 3 _xIVð Þ;

_xH ¼ 2
W H

W O

_xIV � _xI � _xIIIð Þ:

ð2:23Þ
We should mention that, although we have restricted our numerical computations to the case of reduced
chemistry model, the techniques developed in this paper can be extended to general detailed chemical mech-
anisms without major conceptual modifications.

2.3. Moment M1 model for radiative transfer

In many practical applications, solving the radiative transfer equation (2.6) is computationally very
demanding and moment-based approximations are selected to speed up the computations. As an example
of these approximations we consider the entropy M1 model [1,14,2]. In order to formulate the M1 model asso-
ciated with the radiative transfer equation (2.6) we define the first three angular moments of the radiative
intensity as
E ¼ 1

c

Z
S2

I dX; F ¼ 1

c

Z
S2

cXI dX; P ¼ 1

c

Z
S2

X� XI dX: ð2:24Þ
Here, Eðt; m; xÞ is the spectral radiative energy, Fðt; m; xÞ the spectral radiative flux vector and Pðt; m; xÞ the spec-
tral radiative pressure tensor. Integrating (2.6) over all directions X, we obtain its zeroth-moment
otE þ sr � F ¼ �crðE � 4pBðT ; mÞÞ: ð2:25Þ

This equation is the spectral radiative energy balance equation. Next, multiplying (2.6) by X and integrating
over all directions, we obtain its first-moment
otFþ sc2r � P ¼ �crF: ð2:26Þ
This equation is the spectral radiative momentum balance equation.
Eqs. (2.25) and (2.26) are the basis of all angular moments models. However, the system they form is not

closed (there are more unknowns than equations). To close it, we need an assumption on the radiative pressure
so that we can write it as a function of the radiative energy and radiative flux. In the case of M1 model [4,3], we
use a maximum entropy principle. The radiative entropy is given by
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�hðIÞ ¼ 2km2

c3
½ðnI þ 1Þ lnðnI þ 1Þ � nI lnðnIÞ� with nI ¼

c2

2hm3
I :
With this definition, we can express the spectral M1 closure function Î as the maximum of the radiative entro-
py among the functions whose first two moments are E and F,
HðÎÞ ¼ max
I

HðIÞ ¼ 1

c

Z
S2

�hðIÞ dX dm :
1

c

Z
S2

I dX ¼ E and
1

c

Z
S2

cXI dX ¼ F

	 

:

Solving this maximization problem, we get the form of the closure
Î ¼ 2hm3

c2
ehm=kXT �A � 1
� ��1

;

where A is set so that the first two moments of the closure function are E and F. It is now possible to close the
system (2.25) and (2.26) expressing the radiative pressure as the second moment of our closure function. This
leads to the Eddington form
P ¼ DE; ð2:27Þ

where the Eddington tensor D is given by
D ¼ 1� vðfÞ
2

Iþ 3vðfÞ � 1

2

F� F

kFk2
; vðfÞ ¼ 3þ 4jfj2

5þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 3jfj2

q ; ð2:28Þ
with I is the identity matrix, v the Eddington factor and f ¼ F
cE the normalized flux. Hence, the equations to

solve for the M1 model are
otE þ sr � F ¼ �crðE � 4pBðT ; mÞÞ;
otFþ sc2r � P ¼ �crF;

ð2:29Þ
where the radiative pressure PðE;FÞ is defined in (2.27). Note that the M1 model (2.29) is hyperbolic, con-
serves the energy, locally decreases the total entropy, preserves the positivity of the radiative energy, sat-
isfies the diffusion limit, and has a natural limitation of the flux i.e., kfk � 1. The flux limited
characteristic ensures that any radiative signal is propagated at a velocity below the speed of light. These
properties are interesting and are required in many physical application in radiation hydrodynamics. We
should mention that the well-known diffusion and PN models do not satisfy these properties, compare
[29] for numerical comparisons. For instance, in diffusion models, the signal is allowed to propagate at
any arbitrarily high speed.

3. Solution procedure and numerical methods

Due to the absence of angular variable in radiation model, the structure of the partial differential equations
in the combined low-Mach flows and M1 model allow for consistent discretization tools to be used for both
flow and radiation. Three stages namely, flow stage, combustion stage, and radiation stage are required for
numerical solution of the coupled equations (2.16) and (2.29). In the current work, we use a modified projec-
tion method based on the MAC scheme which is similar to that used in [7,33] as an extension of the MAC
scheme [38] for incompressible flows. The essential differences are in the use of extra source term and the inclu-
sion of radiation and chemical effects. The M1 equations (2.29) are solved using an HLL method in the same
mesh structure as the one used in flow solution. In order to explain the steps required for a solution procedure,
we divide the time interval into subintervals ½tn; tnþ1� with tn ¼ nDt and we denote by Wn the value of a generic
function W at time tn. The procedure to advance the solution from the time tn to the next time tnþ1 can be car-
ried out in the following steps:

Step 1. Radiation stage:

i. Solve for Enþ1 and Fnþ1
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Enþ1 � En

Dt
þ sr � Fn ¼ �crðEnþ1 � 4pBðT n; mÞÞ;

Fnþ1 � Fn

Dt
þ sc2r � Pn ¼ �crFnþ1;

ð3:1Þ
ii. Calculate the radiative heat term
qnþ1
R ¼ sc

Z 1

0

rð4pBðT n; mÞ � Enþ1Þ dm: ð3:2Þ
Step 2. Combustion stage:

i. For i ¼ 1; 2; . . . N s, update the mass fractions Y nþ1
i

Y nþ1
i � Y n

i

Dt
þ un � rY n

i þ Y n
i Qn � 1

ReSc
r2Y nþ1

i � Da _wn
i ¼ 0: ð3:3Þ
ii. Update the reaction rates _xnþ1
i according to (2.23) and calculate the chemical heat term
qnþ1
C ¼

XN s

i¼1

_xnþ1
i : ð3:4Þ
Step 3. Flow stage:

i. Formulate the intermediate source term Q�
Q� ¼ 1

p0Pr Re
r2T n � 1

cp0

qnþ1
R þ qnþ1

C : ð3:5Þ
ii. Update the density qnþ1
qnþ1 � qn

Dt
þ un � rqn þ qnQ� ¼ 0: ð3:6Þ
iii. Update the temperature T nþ1
T nþ1 ¼ p0

qnþ1
: ð3:7Þ
iv. Formulate the source term Qnþ1
Qnþ1 ¼ 1

p0Pr Re
r2T nþ1 � 1

cp0

qnþ1
R þ qnþ1

C : ð3:8Þ
v. Calculate the auxiliary velocity u�
u� � un

Dt
þ un � run � Qnþ1un � 1

Re
1

qnþ1
r2un þ 1

3
rQnþ1

� �
¼ 0: ð3:9Þ
vi. Solve for the pressure pnþ1
�r � Dt
qnþ1
rpnþ1

� �
¼ Qnþ1 �r � u�: ð3:10Þ
vii. Update the velocity unþ1
unþ1 ¼ u� � Dt
qnþ1
rpnþ1: ð3:11Þ
Notice that we have assumed no outer compression in the flow system such that the pressure appeared in
(3.5), (3.7) and (3.8) is a constant i.e., p0 ¼ pð0Þ. For closed systems, this pressure should be obtained by solving
the ordinary differential equation (2.10). Note that the Poisson problem (3.10) is obtained by taking the diver-
gence of (3.9) and using the fact that r � u ¼ Q. In the solution procedure, only one linear system has to be
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solved at each time step to update the pressure pnþ1 from (3.10). We should also point out that the reaction
rates _xn

i and the source term Qn in (3.3) contain the explicit temperature variable T n. It is possible to treat these
terms implicitly by solving first the flow stage followed by the combustion stage. In the considered test exam-
ples, both treatment produce the same results. Another way to solve the above equations is to involve all the
stages implicitly in time. This procedure leads to a coupled nonlinear system to be solved at each time step.
However, the numerical solution of such nonlinear system is computationally demanding and may limit the
efficiency of the algorithm.

3.1. Space discretization

The space discretization of differential operators in the flow and combustion stages is performed using a
staggered grid in which the different variables are located at different gridpoints as shown in Fig. 1 for a
two-dimensional situation. This type of meshes, widely used in computational fluid dynamics, stabilizes the
numerical method and guarantees that the computed flow solution is not perturbed by spurious pressure
modes. All the second-order spatial derivatives are discretized using the central difference method whereas,
upwind differencing is used for the first order spatial derivatives. Details on the implementation of these meth-
ods are given in [7,33] and will not be repeated here.

In this section, we focus our attention on the spatial discretization of the M1 model. For two-dimensional
problems, the M1 model (2.29) becomes
oE
ot
þ s

oF x

ox
þ s

oF y

oy
¼ �crðE � 4pBðT ; mÞÞ;

oF x

ot
þ sc2 oP xx

ox
þ sc2 oP xy

oy
¼ �crF x;

oF y

ot
þ sc2 oP yx

ox
þ sc2 oP yy

oy
¼ �crF y ;

ð3:12Þ
where radiative flux F ¼ ðF x; F yÞT, the Eddington factor f ¼ ðf x; f yÞT and the radiative pressure
P xx ¼ 1� vðf x; f yÞ
2

þ 3vðf x; f yÞ � 1

2

F xF x

ðF xÞ2 þ ðF yÞ2

 !
E;

P xy ¼ P yx ¼ 3vðf x; f yÞ � 1

2

F xF y

ðF xÞ2 þ ðF yÞ2

 !
E;

P yy ¼ 1� vðf x; f yÞ
2

þ 3vðf x; f yÞ � 1

2

F yF y

ðF xÞ2 þ ðF yÞ2

 !
E;

ð3:13Þ
with
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Fig. 1. Staggered grid for two-dimensional space discretization.
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f x ¼ F x

cE
; f y ¼ F y

cE
; vðf x; f yÞ ¼ 3þ 4ððf xÞ2 þ ðf yÞ2Þ

5þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 3ððf xÞ2 þ ðf yÞ2Þ

q :
Eqs. (3.12) can be rewritten as a system of conservation laws with source term
1

sc
oU

ot
þ oFðUÞ

ox
þ oGðUÞ

oy
¼ � 1

s
RðUÞ; ð3:14Þ
where
U ¼
E

F x

F y

0
B@

1
CA; FðUÞ ¼

F x

c

cP xx

cP yx

0
B@

1
CA; GðUÞ ¼

F y

c

cP xy

cP yy

0
B@

1
CA; RðUÞ ¼

rðE � 4pBðT ÞÞ
rF x

rF y

0
B@

1
CA:
It is easy to verify that the Jacobian matrices associated with flux functions FðUÞ and GðUÞ are given by
0 1 0
ð2f 2�3ðf y Þ2Þðv�f v0Þþðf y Þ2

f 2
f xðf y Þ2ð6v�3f v0�2Þ

2f 4 þ f y

f
f y ðf xÞ2ð1�3vþf v0Þ

f 4 � ðf y Þ3v0
2f 3

3f xf y ðv�f v0Þ�1
2f 2

f y ðf xÞ2ð3f v0�3v�1Þ�3ðf y Þ3ð1þvÞ
2f 4

3f xðf y Þ2ðf v0þv�1Þþðf xÞ3ð3v�1Þ
2f 4

0
BB@

1
CCA;
and
0 1 0
ð2f 2�3ðf xÞ2Þðv�f v0Þþðf xÞ2

f 2
f y ðf xÞ2ð6v�3f v0�2Þ

2f 4 þ f x

f
f xðf y Þ2ð1�3vþf v0Þ

f 4 � ðf xÞ3v0
2f 3

3f xf y ðv�f v0Þ�1
2f 2

f xðf y Þ2ð3f v0�3v�1Þ�3ðf xÞ3ð1þvÞ
2f 4

3f y ðf xÞ2ðf v0þv�1Þþðf y Þ3ð3v�1Þ
2f 4

0
BB@

1
CCA;
respectively. The eigenvalues of the matrix oFðUÞ
oU

are given by
k	 ¼ c
f x

n
	

ffiffiffi
2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðn� 1Þðnþ 2Þð2ðn� 1Þðnþ 2Þ þ 3ðf yÞ2Þ
q

ffiffiffi
3
p

nðnþ 2Þ

0
@

1
A; k0 ¼ c

ð2� nÞf x

f 2
;

with n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 3f 2

p
and f 2 ¼ ðf xÞ2 þ ðf yÞ2. Analogously, the eigenvalues of the matrix oGðUÞ

oU
are
b	 ¼ c
f y

n
	

ffiffiffi
2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðn� 1Þðnþ 2Þ 2ðn� 1Þðnþ 2Þ þ 3ðf xÞ2
� �r
ffiffiffi
3
p

nðnþ 2Þ

0
BB@

1
CCA; b0 ¼ c

ð2� nÞf y

f 2
:

Using the same mesh structure as the one used in hydrodynamics shown in Fig. 1, a semi-discrete M1 model
reads
1

sc
dUi;j

dt
þ
Fiþ1

2;j
�Fi�1

2;j

Dx
þ
Gi;jþ1

2
� Gi;j�1

2

Dy
¼ � 1

s
RðUi;jÞ; ð3:15Þ
where the numerical fluxes Fi	1
2;j

and Gi;j	1
2

have to be reconstructed such that the discretization (3.15) is con-
sistent to the one used to discretize the low-Mach equations in (2.16). Furthermore, it is required that discret-
ization method should be monotone and preserve positivity and flux limitation properties. The exact Riemann
solver for M1 equations is generally considered too expensive for most Godunov type methods. As a result,
several approximate Riemann solvers have been developed. One of the most widely used solvers is the Roe
approximate Riemann solver [25]. The Roe’s solver requires eigen-decomposition, which becomes more com-
plicated and time consuming in radiation transport. Furthermore, the Roe’s approximate Riemann solver
does not preserve the positivity.

The HLL approximate Riemann solver proposed in [9] provides a positive scheme if used with an appro-
priate choice of wavespeed bounds for any hyperbolic system. Moreover, the HLL Riemann solver does not
require field-decomposition. Applied to the semi-discrete problem (3.15), the HLL reconstruction gives
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Fiþ1
2;j
¼

aþ
iþ1

2;j
Fi;j � a�

i�1
2;j

Fiþ1;j

aþ
iþ1

2;j
� a�

i�1
2;j

þ
aþ

iþ1
2;j

a�
i�1

2;j

aþ
iþ1

2;j
� a�

i�1
2;j

ðUi;j �Uiþ1;jÞ;

Gi;jþ1
2
¼

bþi;jþ1
2
Gi;j � b�i;j�1

2
Gi;jþ1

bþi;jþ1
2
� b�i;j�1

2

þ
bþi;jþ1

2
b�i;j�1

2

bþi;jþ1
2
� b�i;j�1

2

ðUi;j �Ui;jþ1Þ;
ð3:16Þ
where the characteristic speeds a	
iþ1

2;j
and b	i;jþ1

2
are defined as� � � �
aþ
iþ1

2;j
¼ max 0; kþi;j; k

þ
iþ1;j ; a�iþ1

2;j
¼ min 0; k�i;j; k

�
iþ1;j ;

bþi;jþ1
2
¼ max 0; bþi;j; b

þ
i;jþ1

� �
; b�i;jþ1

2
¼ min 0; b�i;j; b

�
i;jþ1

� �
:

ð3:17Þ
Once the numerical fluxes in (3.16) are reconstructed, the time integration of the semi-discrete equations (3.15)
is performed using the semi-implicit scheme (3.1).

4. Results and numerical examples

The presented low-Mach asymptotic for fluid dynamics was verified in Ref. [33] using the same discretiza-
tion methods as those presented in the current work. In [33] the well-known procedure of manufacturing solu-
tions has been considered. The numerical results obtained with low-Mach model and the exact manufactured
solution were in perfect agreement. Therefore, we will not present these results here. In this section, three test
examples with different range of difficulties have been selected to check the performance of the proposed cou-
pled radiation hydrodynamics. We first consider a static purely radiative transfer, next we solve the natural
convection with large temperature difference in non-reacting gray medium. In the last example, we test our
methods for a diffusion methane/air flame with non-gray chemical species.

4.1. Static purely radiative problem

As a first test example we consider radiative transfer in a static gray fluid contained in the unit square
D ¼ ½0; 1� � ½0; 1�. This corresponds on solving Eqs. (2.29) with gray Plank function
BðT Þ ¼ rRT 4; ð4:1Þ

where rR ¼ 5:67� 10�8 is the Boltzmann constant. Non-dimensional quantities are used such that the radia-
tive speed c ¼ 1. We also assume that a thermodynamic equilibrium holds such that the fluid temperature and
the radiation temperature are equal i.e., E ¼ 4pBðT Þ. Thus, the term in the right hand side of the first equation
in (2.29) vanishes and the optical thickness s is the only free parameter in the problem considered. Notice that
the absorption coefficient is related to s by the definition (2.3) with xref ¼ 1. On the boundary oD we use
E ¼ 4pBðT wÞ; F x ¼ F y ¼ 0;
where T w is the wall temperature. Here, only the bottom wall is heated at T ¼ 1000 and the other remaining
walls are fixed at T ¼ 300. Initially, E ¼ 4pBð300Þ, F x ¼ F y ¼ 0 and steady-state results are presented. The
time stepping is stopped when the relative L1�error in the radiative energy is less than 10�7. Two cases are
studied in terms of the optical thickness, namely s ¼ 1 and s ¼ 0:1. Our objective from this example is to verify
the performance of the M1 model compared to a direct solver for the radiative transfer equation (2.6). To this
end we solve the radiative transfer equation (2.6) using the well-established diffusion synthetic acceleration
(DSA) method. The DSA method uses the diffusion approach to accelerate the source iteration which has been
widely used in computational radiative transfer, we refer to [30,28] for the implementation of the method and
further discussions on other direct methods can found therein. The S8 discrete-ordinate algorithm is selected
for the discretization of angle variable and a mesh of 100� 100 is used in our computations.

Fig. 2 contains level curves for the normalized radiative energy, E ¼ E=Bð1000Þ, for s ¼ 1 and s ¼ 0:1. In
this figure we show contours with 10 equally spaced contour lines from E ¼ 0:045 to E ¼ 0:50. An analysis of
plots shows that the HLL scheme used to solve the M1 model produces accurate solutions which are very close
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Fig. 2. Contours of the normalized radiative energy for s ¼ 1 (left) and s ¼ 0:1 (right). The solid and dashed lines present the results
obtained using the radiative transfer and the M1 model, respectively.
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to the direct solution of radiative transfer equations. For s ¼ 1 there is a reasonable agreement with the results
obtained using the M1 model and those obtained using the direct solver. At low optical thickness the discrep-
ancies between the direct solver and the M1 model are very small since the radiative regime is diffusive and the
M1 model can be a good candidate for such situations. It should be noted that approximately 2422 and 18,003
steps are needed to reach a steady-state solution for s ¼ 1 and s ¼ 0:1, respectively.

To give an idea about the CPU times, Table 2 summarizes some of them for s ¼ 1 and s ¼ 0:1, where the
computations were made in a Pentium IV 2.66 GHz having 1Gb of RAM. The codes only take the default
optimization of the machine, i.e. they are not parallel codes. We have listed computational timings for the
DSA algorithm using the S4 discrete-ordinate set (containing 24 directions in the unit sphere) and the S8 (with
80 ordinates). It is obvious that increasing the number of directions in Sn discrete-ordinate sets results in an
increase of the computational cost for the DSA algorithm. As expected, in all presented simulations the M1

model is faster than the DSA method for both values of s. A balance between the accuracy reported in
Fig. 2 and the computational work listed in Table 2 benefits the M1 model. As efficiency is particularly impor-
tant in the development of radiative simulation codes, the M1-radiation model used is not only realistic
enough to yield meaningful calculations, but also simple and fast enough to avoid overcharging the compu-
tational cost.

4.2. Natural convection with large temperature difference

The natural convection in a squared cavity with large temperature difference has been chosen to verify the
performance of the M1 model for low-Mach number flow in non-reacting gray medium. This test example has
been used in several numerical studies in CFD, see [15,24] among others. The purpose of the present example
is to study the radiation–convection interaction in natural convection by using the M1 model. Here, the flow
domain is a squared cavity with dimension L while the left and right vertical walls are maintained at hot tem-
Table 2
CPU times (in seconds) for the static purely radiative problem

DSA using S4-set DSA using S8-set M1 model

s ¼ 1 49.3 174.1 36.7
s ¼ 0:1 581.6 2440.8 298.0
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perature T H and cold temperature T C, respectively. The bottom and top horizontal walls are insulated. Using
the notation shown in Fig. 3, the boundary conditions are
T ðt; x̂Þ ¼ T H; Eðt; x̂Þ ¼ 4pBðT HÞ; 8x̂ 2 CH;

T ðt; x̂Þ ¼ T C; Eðt; x̂Þ ¼ 4pBðT CÞ; 8x̂ 2 CC;

nðx̂Þ � rT ðt; x̂Þ ¼ 0; nðx̂Þ � rEðt; x̂Þ ¼ 0; 8x̂ 2 C;

uðt; x̂Þ ¼ 0; Fðt; x̂Þ ¼ 0; 8x̂ 2 CH [ C [ CC;

ð4:2Þ
where BðT Þ is the gray Planck function (4.1) and nðx̂Þ denotes the outward unit normal in x̂ with respect to the
boundary wall. The Rayleigh number, which is the parameter of interest in natural convection, is related to the
Reynolds number by Ra ¼ Pr Re2. The local Nusselt number at the hot wall, Nu, and its averaged value, Nu,
are defined as
NuðyÞ ¼ L
T H � T C

oT
ox

����
CH

; Nu ¼ 1

L

Z L

0

NuðyÞ dy:
In our computations, L ¼ 1 m, T H ¼ 1000 K, T C ¼ 300 K, Pr ¼ 0:71 and Ra ¼ 104. The absorption coefficient
r and the optical thickness s are both set to unity. We use a mesh with 100� 100 gridpoints and steady-state
results are presented. In Fig. 4, we display the isotherms for computations without radiation and with the M1

model. As expected, due to buoyancy forces, the fluid rises from the hot wall and propagates towards the cold
wall. The velocity vectors are presented in Fig. 5. The effects of radiation on both temperature distribution and
flow field can clearly be seen from these figures. It is also noticeable that the thermal radiation alters the fluid
motion inside the enclosure, compare the recirculation region and its location in Fig. 5. The low Mach asymp-
totic and the M1 model accurately resolve this test problem.

For comparison reasons, we plot in Fig. 6 cross-sections of the u-velocity at mid-width cavity of x ¼ L=2
and the v-velocity at mid-height cavity of y ¼ L=2. Fig. 7 shows the cross-section of the temperature at
mid-height cavity and the local Nusselt number at the hot wall. The local Nusselt number at the cold wall
shows similar features and is not presented here. Along with the plots shown in Figs. 6 and 7, we have included
the results obtained using the diffusion model. This model can be recovered from Eqs. (2.29) by setting the
Eddington tensor D ¼ 1

3
I in (2.28). For steady-state computations this reduces to the diffusion equation
�s2r � 1

3r
rE

� �
þ rE ¼ 4prBðT Þ; ð4:3Þ
to be solved for the radiative energy E only.
From a simple examination of Fig. 6 one observes that the effects of radiation on the velocity field are more

pronounced near the hot wall becoming smaller close to the cold wall. The v-velocity component also shows
L

L

Γ

Γ

Γ

ΓH C
g

Fig. 3. Schematic representation of natural convection in a squared cavity.



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x/L

y/
L

405

440

475

510

545

580

615

650

685

720

755

790

825860
89

593
0

96
5

370 33
5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x/L
y/

L

54
5

580

615

650

685

720

755

790

825

860

89
5

93
0

96
5

51
0

475
44

0 405

37
0

33
5

Fig. 4. Isotherms for natural convection without radiation (left) and with M1 model (right).
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large difference in the mid-plane of the cavity. Furthermore, when radiation is included the temperature
increases in the center of the cavity, see Fig. 7. This can be explained by the fact that the radiative energy
is proportional to the fourth power of absolute temperature, with the increase of temperature difference the
radiative heat transfer between the hot wall and the closer regions becomes smaller than that between the
other cold regions in the cavity.

The computed local Nusselt number in Fig. 6 confirms that about 13% of the heat released is radiated a way
from the enclosure when radiation is accounted for by the M1 model. It was concluded that, for the considered
Ra number, the averaged Nusselt number Nu ¼ 3:3833 for the simulation without radiation and Nu ¼ 2:0741
for the M1 model. It turns out that the averaged Nusselt number for the M1 simulation is less that 38.69%
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Fig. 6. Cross-section of the u-velocity at mid-width cavity (left) and the v-velocity at mid-height cavity (right).
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smaller than the averaged Nusselt number obtained by neglecting the interaction between convection and radi-
ation. A CPU time would take around 63 min for no-radiation case and 74 min for the M1 computations.
From a computational stand point and regarding to the obtained results, the M1 model can be considered
as an efficient method for incorporating radiative effects in natural convection simulations.

4.3. Diffusion methane/air flame

The present example attempts to numerically examine a diffusion methane/air flame with and without con-
sideration of the radiation effects. The M1 model has been used for this purpose. Here, the proposed physical
model consists of a two-dimensional enclosure containing a diffusion flame with the fuel injection diameter D
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is taken as reference length, as sketched in Fig. 8. The width of the inner fuel region and outer air region are
respectively, D and 2D while length and height of the computational domain are taken as 20D and 40D,
respectively. The burner is initially filled with air at room temperature and the flow is at rest. Fuel and air
are both at room temperature are allowed to enter the system giving rise to combustion and the flame prop-
agates to the burner exit. The velocities of the central fuel and the annular air jets are taken to be 10 and 5 m/s,
respectively. The mass fraction of the species at the inlet is distributed according to the local equivalence ratio
as shown in Table 3. Thermodynamic properties of chemical species, namely, molar concentration of species
are taken from the database CHEMKIN-III [10]. The selected flame conditions and reference values for the
evaluation of the present problem are summarized in Table 4. For this flame conditions, the Reynolds number
Re ¼ 4000, the Schmidt number Sc ¼ 0:93, and the optical thickness s ¼ 0:5.

In terms of radiative heat transfer, the species CO; CO2 and H2O are the most radiating species in methane/
air diffusion flames. This due to their absorbing and emitting nature in participating media. In all the results
presented here, the M1 model with 15 groups is solved, see [35] for details on the 15 groups and their opacities.
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Fig. 8. Configuration for the two-dimensional diffusion flame.

Table 3
Composition of the gas used in methane/air flame

Species Mass fraction (%)

N2 69.239
O2 0.0
C4 1.776
CO 0.1
CO2 18.899
H2O 9.986



Table 4
Property parameters and reference quantities considered in the present study

Quantity Unit Symbol Typical reference value

x; y m xref ¼ D 1 m
u m/s uref 1 m/s
q kg/m3 qref 1.2 kg/m3

g m/s2 gref 10 m/s2

p kg/ms2 pref 105 Pa = 105 kg/ms2

T K T ref 300 K
r 1/m rref 100/m
i kg/s3 sr I ref 258,480 kg/s3 sr
R m2/K s2 287 m2/K s2

cp m2/K s2 1005 m2/K s2

K kg m/K s2 25� 10�3 kg m/K s2

l kg/ms 18� 10�6 kg/ms
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The mean absorption coefficients are evaluated using the techniques described in [23]. Based on the notation
depicted in Fig. 8, the boundary conditions for the flow variables are
uðt; x̂Þ ¼ uin; vðt; x̂Þ ¼ 0 8x̂ 2 Cin;

uðt; x̂Þ ¼ vðt; x̂Þ ¼ 0 8x̂ 2 Cw;

nðx̂Þ � ruðt; x̂Þ ¼ nðx̂Þ � rvðt; x̂Þ ¼ 0 8x̂ 2 Cout;

T ðt; x̂Þ ¼ T in 8x̂ 2 Cin;

T ðt; x̂Þ ¼ T w 8x̂ 2 Cw;

nðx̂Þ � rT ðt; x̂Þ ¼ 0 8x̂ 2 Cout:

ð4:4Þ
The inlet flow and temperature are defined such that uin ¼ ufuel, T in ¼ T fuel on Cfuel, and uin ¼ uair, T in ¼ T air on
Cair. For the chemical species, we imposed the following boundary conditions
Y iðt; x̂Þ ¼ Y i;in 8x̂ 2 Cin;

nðx̂Þ � rY iðt; x̂Þ ¼ 0 8x̂ 2 Cw [ C out;
ð4:5Þ
with Y i;in ¼ Y fuel on Cfuel and Y i;in ¼ Y air on Cair. Finally, the boundary condition for radiative energy and flux
are given as
Fðt; x̂Þ ¼ 0 8x̂ 2 Cin [ Cw [ C out;

Eðt; x̂Þ ¼ BðT in; mÞ 8x̂ 2 Cin;

Eðt; x̂Þ ¼ BðT w; mÞ 8x̂ 2 Cw;

nðx̂Þ � rEðt; x̂Þ ¼ 0 8x̂ 2 Cout:

ð4:6Þ
First we check the grid dependence of the computed solutions for this test problem. To this end we consider
four uniform meshes with 50� 100, 100� 200, 200� 400 and 400� 800 gridpoints. On each mesh, we com-
pute the mean temperature variation (MTV) defined as
MTV ¼ 1
�T

X
i;j

T ij � �T
� �2

DxDy

 !1
2

with �T ¼
X

i;j

T ijDxDy:
The obtained MTV results are listed In Table 5 for simulations without radiation and with M1 model at time
t ¼ 0:004 s and t ¼ 0:009 s. It is easy to verify that for the last two meshes the differences in the MTV values
reported in Table 5 are very small. For instance, the discrepancies in the maximum and minimum values of
temperature on the mesh with 200� 400 gridpoints and the mesh with 400� 800 gridpoints are less than
0.3% at time t ¼ 0:004 s. These differences become less than 0.8% at time t ¼ 0:009 s. Similar behaviors have
been observed for the other simulation times. Therefore, bearing in mind the slight change in the results from
mesh with 200� 400 gridpoints and mesh with 400� 800 gridpoints at the expanse of rather significant in-



Table 5
The mean temperature variation for simulations without radiation and with M1 model

Gridpoints Without radiation With M1 model

t ¼ 0:004 s t ¼ 0:009 s t ¼ 0:004 s t ¼ 0:009 s

50� 100 0.4237 0.4512 0.4527 0.5013
100� 200 0.3121 0.4116 0.3758 0.4534
200� 400 0.3428 0.3993 0.3546 0.4078
400� 800 0.3511 0.4002 0.3605 0.4101

1058 B. Dubroca et al. / Journal of Computational Physics 225 (2007) 1039–1065
crease in CPU times, the mesh with 200� 400 gridpoints is believed to be appropriate to obtain the results free
of grid effects. Hence, the results presented herein are based on the mesh with 200� 400 gridpoints.

Fig. 9 illustrates the temperature distributions at times t ¼ 0:002, 0.004, 0.006, 0.009 and 0.013 s. We pres-
ent results for low-Mach simulations without radiation and for simultaneously occurring flow, combustion,
Fig. 9. Evolution of temperature distribution without radiation (upper row) and with M1 model (lower row) at times (from left to right)
t ¼ 0:002, t ¼ 0:004, t ¼ 0:006, t ¼ 0:009 and t ¼ 0:013 s.
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convection and M1-radiation phenomena. It is clear that the inclusion of thermal radiation in the problem, by
means of the M1 model, has reduced the size of the flame region where maximum temperatures are located.
Radiative heat transfer is also responsible for reducing the size of high temperature regions of the flame and
for shifting them towards the furnace inlet. Moreover, the M1 model simulates faster heat release, leading to a
shorter flame. This model has increased the percentage of heat leaving through axial location of the flame,
emphasizing the significance of the particular sink term, r � qR, in the total energy balance. For the considered
flame, ignoring the effects of thermal radiation causes cooler flame temperatures with a maximum error of
about 350 K in the centerline region above the visible flame tip. It is also clear that the radiative heat flux
is zero at the inlet of the burner because there is very little radiation since the temperature at the inlet is
approximately that of the surroundings (300 K). Near the exit, the radiation out of the solid wall increases
again for the reference case because this region is localized near the blackbody surroundings at 300 K.

In Fig. 10 we present the time evolution of velocity vectors for the no-radiation and the M1-radiation sim-
ulations. At short time calculations, very little energy is needed to drive the flow compared with the experiment
Fig. 10. Evolution of velocity field without radiation (upper row) and with M1 model (lower row) at times (from left to right) t ¼ 0:002,
t ¼ 0:004, t ¼ 0:006, t ¼ 0:009 and t ¼ 0:013 s.
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on the flow at large time simulations. We can observe that the velocity increases in the inlet region along the
centerline due to the increase in temperature. The increased radial velocity provided an additional mechanism
for mixing, so that the reaction zone become wider and the flame is shorter than that calculated without radi-
ation. It can also be seen that two vortices are formed and have been advected within the flame front during
the simulation process. The location of these weak recirculation zones within the flame domain indicates
clearly that thermal radiation alters the gas flow in the enclosure. It is worth noting that when radiation is
included in the enclosure, an asymmetric behavior is detected in the flame distribution. This asymmetry does
not appear in the simulation without radiation. An explanation for such behavior can be attributed to the
increase of the velocity field produced my the inclusion of radiative effects. Indeed, a simple inspection of
Fig. 10 reveals that the radiative source has increased the buoyancy force which turns to a faster advection
of the flame front. Taking into account this increase in the velocity field along with the considered Reynolds
Fig. 11. Evolution of CO2 mass fraction without radiation (upper row) and with M1 model (lower row) at times (from left to right)
t ¼ 0:002, t ¼ 0:004, t ¼ 0:006, t ¼ 0:009 and t ¼ 0:013 s.
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number, the flow appeared to change from laminar to turbulent regime. Hence, the asymmetric behavior is a
consequence of turbulent effects.

To value the role of radiation on the participating gas, we display in Figs. 11 and 12 the distribution of mass
fractions of the two selected species H2O and CO2, respectively. Examination of other species in the flame
reveals similar trends. Note that, the flame stretching plays an important role in the production of CO2 in
the high scalar dissipation rate range, namely, the stronger the stretching, the more incomplete the reactions
and the higher the CO2 concentration. It is clear that accounting for radiation in the simulations, by M1

model, can affect not only the flame temperature but also concentrations of species such as H2O and CO2.
For the considered flame conditions, concentration of H2O displays maximum values in the annular regions
where the flame temperatures are also very high. The M1 model affects the computed CO2 mass fraction at all
simulation times. These results offer a comprehensive study of the effects of thermal radiation on the overall
Fig. 12. Evolution of H2O mass fraction without radiation (upper row) and with M1 model (lower row) at times (from left to right)
t ¼ 0:002, t ¼ 0:004, t ¼ 0:006, t ¼ 0:009 and t ¼ 0:013 s.
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flame modeling, since radiation heat transfer, energy conservation, and combustion chemistry are fully cou-
pled in any combustion system or flame problem.

More comparisons are displayed in Figs. 13 and 14 by plotting cross-sections at the axial location x ¼ 10D
for temperature, velocity, CO2 and H2O mass fractions. The temperature and the v-velocity profiles in Fig. 13
clearly show the difference of their behaviors when radiation and no-radiation computations are carried out.
The radiation from the participating gas decreases the maximum value of the gas temperature near the flame.
For our flame conditions, the M1-model also decreases the v-velocity along the axial direction in the flame.
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The calculated CO2 and H2O mass fractions shown in Fig. 14, indicate that the CO2 species substantially
decreases in the M1 model. However, the H2O mass fraction increases in the M1-radiation calculation. As
might be expected, a lower peak CO2 mass fraction is associated with a lower local flame temperature. Here,
the M1-radiation calculation yields a peak CO2 mass fraction that is 30.97% lower than that from the no-radi-
ation calculation.

Finally it is worth pointing out that the additional CPU time required to carry out a step with the
M1-radiation model is about 21.81% costly than a computational step in no-radiation simulation. Accord-
ing to these computational costs and the accuracy obtained, the M1 model can be considered more appro-
priate than the discrete-ordinate models, widely used in computational radiative transfer, to perform
numerical studies on reacting radiating flows, in terms of both numerical credibility and computational
cost. This is an important result when it comes to simplified heat transfer analysis in combustion simula-
tions, given that the M1 model is significantly simpler than the discrete-ordinate radiative transfer, regard-
ing mathematics and implementation effort. It is important to note that the M1 model offers a significant
convenience for practical applications, that it can easily be incorporated in any existing CFD code by sim-
ply introducing a couple of hyperbolic partial differential equations into the calculations, describing the
radiative energy and the radiative flux.
5. Conclusions

This work contributes to the investigation of consistent radiative models for the coupling of radiation
and hydrodynamics at low-Mach numbers. Focusing on the moment method for radiative transfer, we
analyzed the impact of radiation in chemically reacting flows at low Mach number. Starting from the full
compressible Navier–Stokes equations and applying a low-Mach asymptotic, we have reconstructed a flow
model able to remove the compressibility effects but preserves density variation. A simplified four-step
chemical reactions are used for reacting species. Using the entropy M1 method in radiation transport,
the radiative transfer equation is transformed to a hyperbolic system independent of angular variables
and easy to implement in an existing solver for reacting flows. A modified projection method for the flow
equations has been combined with an HLL-type scheme for radiation transport. The resulted numerical
method uses a staggered grid arrangement in space. The upwind differencing for convection terms, the
central differencing terms and the averaging on the staggered grid stabilize the algorithm in the vicinity
of discontinuities.

We have first compared results obtained using the M1 model to those obtained using a direct kinetic
solver for a two-dimensional test example on purely static radiative transfer. The agreement between the
two results is good, showing that the radiative energy is accurately reproduced with the M1 model at very
low computational cost compared to the direct kinetic solver. Next we have considered the test example of
non-reacting natural convection with large temperature difference in a squared enclosure. It has been shown
that both, temperature distribution and velocity field are affected by the presence of radiation in the enclo-
sure. The presented results indicate that the M1 model can serve as efficient solver to be integrated into
existing software packages for natural convection. In a third step we have investigated a diffusion meth-
ane/air flame with consideration of the radiation effects in a non-gray participating media. The evolution
of temperature, velocity and species show large differences when computations are carried out with or with-
out radiation effects. We have shown again that the flame behavior is very well described by the low-Mach
and M1 equations. It has been observed that the M1 model can be considered as fast procedure for solving
radiation effects in diffusion flames with a good accuracy. In addition, the M1 model is an hyperbolic sys-
tem of partial differential equations providing convenience in discretization of the transport equations in
flow and combustion.

Since second order methods are widely used in CFD codes for practical applications, the coupling
between the M1 model and the low-Mach equations will be further investigated in the future. Other future
works include the incorporation of turbulent effects in fluid dynamics equations, soot formation in radi-
ative transfer, and also implementation of the models for reacting flow problems in three space
dimensions.
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pliquées de Bordeaux. The authors acknowledge the funding by the Deutsche ForschungsGemeinschaft in the
collaborative research center SFB568 ‘‘Flow and Combustion in Future Gas Turbine Combustion Chambers’’
at the University of Darmstadt.
References

[1] A.M. Anile, S. Pennisi, M.A. Sammartino, A thermodynamical approach to Eddington factors, J. Math. Phys. 32 (1991) 544–550.
[2] E. Audit, P. Charrier, J.P. Chize, B. Dubroca, A radiation-hydrodynamics scheme valid from the transport to the diffusion limit,

2002. Available from lanl.arxiv.org/abs/astro-ph/0206281.
[3] B. Dubroca, A. Klar, Half moment closure for radiative transfer equations, J. Comput. Phys. 180 (2002) 1–13.
[4] B. Dubroca, J.L. Feugeas, Entropy moment closure hierarchy for the radiative transfer equation, C. R. Acd. Paris, Sér. I, Math. 329

(1999) 915–920.
[5] W. Fiveland, The selection of discrete ordinate quadrature sets for anisotropic scattering, ASME HTD. Fundam. Radiat. Heat

Transfer 160 (1991) 89–96.
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